首页 | 本学科首页   官方微博 | 高级检索  
     


Characteristics of energy storage and dissipation in TiNi shape memory alloy
Authors:E Pieczyska  S Gadaj  WK Nowacki  K Hoshio  Y Makino  H Tobushi  
Affiliation:aInstitute of Fundamental Technological Research, Polish Academy of Sciences, Swietokrzyska 21, Warsaw 00-049, Poland;bDepartment of Mechanical Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
Abstract:The characteristics of energy storage and dissipation in TiNi shape memory alloys were investigated experimentally based on the superelastic properties under various thermomechanical loading conditions. The influence of strain rate, cyclic loading and temperature-controlled condition on the characteristics of energy storage and dissipation of the material was investigated. Temperature on the surface of the material was observed and the influence of variation in temperature on the characteristics was clarified. The results obtained can be summarized as follows. (1) In the case of low strain rate, the stress plateaus appear on the stress-strain curves due to the martensitic transformation and the reverse transformation during loading and unloading. In the case of high strain rate, the slopes of the stress–strain curves are steep in the phase-transformation regions during loading and unloading. The recoverable strain energy per unit volume increases in proportion to temperature, but the dissipated work per unit volume depends slightly on temperature. In the case of low strain rate, the recoverable strain energy and dissipated work do not depend on both strain rate and the temperature-controlled condition. (2) In the case of high strain rate, while the recoverable strain energy density decreases and dissipated work density increases in proportion to strain rate under the temperature-controlled condition, the recoverable strain energy density increases and dissipated work density decreases under the temperature-uncontrolled condition. In the case of the temperature-uncontrolled condition, temperature varies significantly due to the martensitic transformation and therefore the characteristics of energy storage and dissipation differ from these under the temperature-controlled condition. (3) In the case of cyclic loading, both the recoverable strain energy and dissipated work decrease in the early 20 cycles, but change slightly thereafter. (4) The influence of strain rate, cyclic loading and the environment on the characteristics of energy storage and dissipation is important to be considered in the design of shape memory alloy elements.
Keywords:Shape memory ally  Superelasticity  Energy storage  Energy dissipation  Damping  Strain rate  Cyclic deformation  Titanium–  nickel alloy  Environment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号