首页 | 本学科首页   官方微博 | 高级检索  
     

融合注意力机制的时间卷积知识追踪模型
作者姓名:邵小萌  张猛
作者单位:华中师范大学 计算机学院,武汉 430079
基金项目:中央高校科研业务费专项(CCNU19TS020)
摘    要:针对基于循环神经网络(RNN)的深度知识追踪模型存在的可解释性不足和长序列依赖问题,提出一种融合注意力机制的时间卷积知识追踪(ATCKT)模型。首先,在训练阶段学习学生历史交互的嵌入表示;然后,使用基于题目的注意力机制学习特定权重矩阵,从而识别并强化学生的历史交互对每一时刻知识状态不同程度的影响;最后,使用时间卷积网络(TCN)提取学生动态变化的知识状态,在这个过程中利用扩张卷积和深层神经网络扩大序列学习范围,缓解长序列依赖问题。将ATCKT模型与深度知识追踪(DKT)、卷积知识追踪(CKT)等四种模型在ASSISTments2009、ASSISTments2015、Statics2011和Synthetic-5这4个数据集上进行对比实验,实验结果显示,所提模型的曲线下面积(AUC)和准确率(ACC)均有显著提升,尤其在ASSISTments2015数据集上表现最佳,分别提升了6.83~20.14个百分点和7.52~11.22个百分点,并且该模型的训练时间与DKT模型相比减少了26%。可见,所提模型可以更准确地捕捉学生的知识状态,更高效地预测学生未来的表现。

关 键 词:知识追踪  时间卷积网络  注意力机制  序列建模  教育数据挖掘
收稿时间:2022-01-10
修稿时间:2022-03-11
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号