首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络算法的成绩预测模型研究
引用本文:林婷婷. 基于BP神经网络算法的成绩预测模型研究[J]. 计算技术与自动化, 2022, 41(1): 79-81. DOI: 10.16339/j.cnki.jsjsyzdh.202201014
作者姓名:林婷婷
作者单位:肇庆医学高等专科学校,广东 肇庆 526020
摘    要:基于sigmoid激活函数,建立了一种BP神经网络模型。通过对某高中2006年至2015年间的高考平均数据样本进行学习,修正了权值和阈值。系统最大相对误差为0.22%,关联度为0.6667,小误差概率为0.98,方差比为0.0002,预测结果精度为高。用于2016年至2020年间该校高考平均成绩的预测中发现,预测结果与实际结果的最大绝对误差仅为2分。对该校2021年的高考平均成绩进行了预测,最终预测结果为571分。

关 键 词:神经网络  BP算法  成绩预测

Research on Performance Prediction Model Based on BP Neural Network Algorithm
LIN Ting-ting. Research on Performance Prediction Model Based on BP Neural Network Algorithm[J]. Computing Technology and Automation, 2022, 41(1): 79-81. DOI: 10.16339/j.cnki.jsjsyzdh.202201014
Authors:LIN Ting-ting
Abstract:Based on sigmoid activation function, a BP neural network system was established. Its weights and thresholds were further revised by learning the average data of college entrance examination from 2006 to 2015 of a certain high school. The maximum relative error of the system was 0.22%, the correlation degree was 0.6667, the probability of small error was 0.98, and the variance ratio was 0.0002. The prediction accuracy of this BP neural network system was high. In the prediction of the average score of the college entrance examination from 2016 to 2020, it was found that the absolute error between the predicted result and the actual result was only 2 points. In addition, the BP neural network also was used to predict the average score of the college entrance examination in 2021, and affording a final prediction result as 571 points.
Keywords:neural network   BP algorithm   performance prediction
本文献已被 万方数据 等数据库收录!
点击此处可从《计算技术与自动化》浏览原始摘要信息
点击此处可从《计算技术与自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号