Effect of pH on Microstructure and Characteristics of Cream Cheese |
| |
Authors: | R.R. Monteiro D.Q. Tavares P.S. Kindstedt M.L. Gigante |
| |
Affiliation: | Authors Monteiro, Tavares, and Gigante are with Dept. of Food Technology, State Univ. of Campinas, Campinas, SP, Brazil. Author Kindstedt is with Dept. of Nutrition and Food Sciences, Univ. of Vermont, Burlington, VT, U.S.A. Direct inquiries to author Kindstedt (E-mail: ). |
| |
Abstract: | ABSTRACT: This study evaluated the effect of pH on the microstructure of cream cheese and compared pH-induced changes in its microstructure with concomitant changes in cheese firmness and meltability. On 4 different days, experimental batches of cultured hot pack cream cheese were manufactured and analyzed for initial chemical composition. The cheeses were then sectioned into samples that were randomly assigned to 7 different treatment groups. Three groups were exposed to ammonia vapor for 1, 3, and 5 min to increase the pH; 3 groups were exposed to acetic acid vapor for 30, 60, and 90 min to decrease the pH; and 1 unexposed group served as the control. After equilibration at 4 °C, samples were analyzed for pH, firmness, meltability, and microstructure by scanning electron microscopy. The effects of experimental treatments on cheese pH, firmness, and meltability were analyzed by randomized complete block analysis of variance (ANOVA). Relationships between cheese pH and firmness and meltability were evaluated by regression. Experimental treatments significantly affected cheese pH, firmness, and meltability. Cheese firmness decreased and meltability increased with increasing pH from about pH 4.2 to 6.8. Cheese microstructure also changed dramatically over the same approximate pH range. Specifically, the volume of the protein network surrounding the fat droplets increased markedly with increasing pH, presumably due to casein swelling. These data support the hypothesis that protein-to-water interactions increased as the cheese pH increased, which gave rise to progressive swelling of the casein network, softer texture, and increased meltability. |
| |
Keywords: | cream cheese firmness meltability microstructure |
|
|