首页 | 本学科首页   官方微博 | 高级检索  
     


Probabilistic self-organizing map and radial basis function networks
Authors:F. Anouar   F. Badran  S. Thiria  
Affiliation:

a CEDRIC, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 750003 Paris, France

b Laboratoire d’Océanographie et de Climatologie (LODYC), Université de Paris 6, 4 Place Jussieu, 75005 Paris, France

Abstract:
We propose in this paper a new learning algorithm probabilistic self-organizing map (PRSOM) using a probabilistic formalism for topological maps. This algorithm approximates the density distribution of the input set with a mixture of normal distributions. The unsupervised learning is based on the dynamic clusters principle and optimizes the likelihood function. A supervised version of this algorithm based on radial basis functions (RBF) is proposed. In order to validate the theoretical approach, we achieve regression tasks on simulated and real data using the PRSOM algorithm. Moreover, our results are compared with normalized Gaussian basis functions (NGBF) algorithm.
Keywords:Self-organizing map   Dynamic clusters   Likelihood   Radial basis function   Regression
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号