首页 | 本学科首页   官方微博 | 高级检索  
     

多领域自然语言问句理解研究
引用本文:冶忠林,贾真,尹红风. 多领域自然语言问句理解研究[J]. 计算机科学, 2017, 44(6): 216-221, 254
作者姓名:冶忠林  贾真  尹红风
作者单位:西南交通大学信息科学与技术学院 成都610031,西南交通大学信息科学与技术学院 成都610031,DOCOMO Innovations公司 帕罗奥图94304
基金项目:本文受国家自然科学基金(61572407,8),国家科技支撑计划课题(2015BAH19F02,6G04001),中央高校基本科研基金(2682015CX070)资助
摘    要:
问句理解是问答系统的主要任务之一。现有的问句理解方法大多是针对简单句的,且侧重于某种句式结构的理解。提出一种多领域问句理解研究方法,其涉及领域包括人物类、电影类、音乐类、图书类、游戏类、应用类。首先基于CRF算法对问句进行分类和主体识别,然后使用谓词词典和句法分析识别出问句的谓词,最后提出一种谓词消歧方法来解决相同问句具有不同表达方式的问题。实验结果表明,在封闭测试中,所提方法的问句分类和主体识别的平均F-measure值分别为93.88%和92.44%,谓词识别和问句理解的平均准确率分别为91.03%和81.78%。因此,所做的工作基本能满足问句理解的需求。

关 键 词:问答系统  问句理解  谓词消歧  问句分类  主体识别
收稿时间:2016-04-02
修稿时间:2016-09-26

Research on Multi-domain Natural Language Question Understanding
YE Zhong-lin,JIA Zhen and YIN Hong-feng. Research on Multi-domain Natural Language Question Understanding[J]. Computer Science, 2017, 44(6): 216-221, 254
Authors:YE Zhong-lin  JIA Zhen  YIN Hong-feng
Affiliation:School of Information Science and Technology,Southwest Jiaotong University,Chengdu 610031,China,School of Information Science and Technology,Southwest Jiaotong University,Chengdu 610031,China and DOCOMO Innovations Incorporation,Palo Alto 94304,USA
Abstract:
Question understanding is one of the main tasks of question answering system.Current question understan-ding methods aim to solve semantic understanding of simple sentences or specific structure sentences.The method proposed in this paper addresses multi-domain question understanding which includes people,movie,music,book,game,and application domains.Firstly,the question classification based on CRF algorithm and the subject recognition based on CRF algorithm approach are presented.And then the prediction dictionary and semantic analysis are applied to recognize prediction.Finally,the prediction disambiguation method is proposed to deal with the problem that prediction in question has different ways of expression.Experimental results show that the average F-measure value is 93.88% and 92.44% in question classification and semantic analysis experiments.The average accuracy is 91.03% and 81.78% in the prediction recognition and question understanding.Thus,the works in this paper can meet the needs of question understanding.
Keywords:QA system  Question understanding  Prediction disambiguation  Question classification  Subject recognition
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号