首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of nitrogen uptake and heat treatment on the microstructural characteristics and corrosion performance of X190CrVMo20-4-1 steel produced by supersolidus liquid-phase sintering
Authors:Peter K Farayibi  Frederic van gen Hassend  Michael Blüm  Sebastian Weber
Affiliation:1. Department of Industrial and Production Engineering, Federal University of Technology Akure, Akure, Nigeria;2. Lehrstuhl für Neue Fertigungstechnologien und Werkstoffe, Bergische Universität Wuppertal, Solingen, Germany;3. Lehrstuhl Werkstofftechnik, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Bochum, Germany
Abstract:Martensitic stainless steel powder exhibits a high nitrogen uptake when densified by supersolidus liquid-phase sintering in a nitrogen atmosphere, but the optimum uptake, which is beneficial to its resistance to corrosion, is unknown. In this study, the resistance of high-carbon martensitic stainless steel X190CrVMo20-4-1 densified in a nitrogen atmosphere against pitting corrosion was explored. This was to clarify the impact of nitrogen uptake in the steel matrix in the quenched and tempered condition on its corrosion resistance in an aqueous solution. Samples were subjected to potentiodynamic polarisation tests in a de-aerated, 1 wt% NaCl solution. Results revealed that the X190 steel densified in a nitrogen atmosphere at 40-kPa pressure, subjected to deep cryogenic treatment in liquid nitrogen at an austenitising temperature of 1150°C and tempered at 200°C, had the best pitting corrosion resistance with a breakdown potential of 142 ± 11 mV/SCE and a hardness of 738 ± 4 HV10. The matrix around the M7C3 carbides and MX carbonitrides suffered high pitting susceptibility. The implications of this study serve as a basis for the improvement of the functional properties of steels.
Keywords:heat treatment  martensitic stainless steel  nitrogen atmosphere  pitting corrosion  supersolidus liquid-phase sintering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号