首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗糙集的多维关联规则挖掘方法
引用本文:陶多秀,吕跃进,邓春燕. 基于粗糙集的多维关联规则挖掘方法[J]. 计算机应用, 2009, 29(5): 1405-1408
作者姓名:陶多秀  吕跃进  邓春燕
作者单位:广西大学,电气工程学院,南宁,530004;广西大学,数学与信息科学学院,南宁,530004;广西大学,数学与信息科学学院,南宁,530004;广西河池学院,计算机与信息科学系,广西,宜州,546300
基金项目:国家自然科学基金,广西研究生科研创新项目,广西自然科学基金 
摘    要:海量的数据使得关联规则挖掘非常耗时,而并非所有的规则都是用户感兴趣的,应用传统的挖掘方法会挖掘出许多无关信息。此外,目前大部分算法是针对单维规则的。因此,定义了一种挖掘语言使得用户可以指定感兴趣的项以及关联规则的参数(如支持度,置信度等),并提出一种基于粗糙集理论的多维关联规则挖掘方法,动态生成频繁集和多维关联规则,减少频繁项集的生成搜索空间。实例分析验证该算法的可行性与有效性。

关 键 词:关联规则  多维关联规则  频繁集  粗糙集
收稿时间:2008-11-17
修稿时间:2009-01-11

Method based on rough set for mining multi-dimensional association rules
TAO Duo-xiu,LV Yue-jin,DENG Chun-yan. Method based on rough set for mining multi-dimensional association rules[J]. Journal of Computer Applications, 2009, 29(5): 1405-1408
Authors:TAO Duo-xiu  LV Yue-jin  DENG Chun-yan
Affiliation:1.College of Electrical Engineering;Guangxi University;Nanning Guangxi 530004;China;2.College of Mathematics and Information Science;3.Department of Computer and Information Science;Hechi University;Yizhou Guangxi 546300;China
Abstract:It is very time-consuming to discover association rules from the mass of data, and not all the rules are attractive to the user, so a lot of irrelevant information to the user's requirements may be generated when traditional mining methods are applied. In addition, most of the existing algorithms are for discovering one-dimensional association rules. Therefore, the authors defined a mining language which allowed users to specify items of interest to the association rules, as well as the parameters (for example, support, confidence, etc.). A method based on rough set theory for multi-dimensional association rules mining was also proposed, which dynamically generated frequent item sets and multi-dimensional association rules, and reduced the search space to generate frequent item sets. Finally, an example verifies the feasibility and effectiveness of the method.
Keywords:association rule  multi-dimensional association rules  frequent item sets  rough set  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号