首页 | 本学科首页   官方微博 | 高级检索  
     

基于纹理特征的高分辨率SAR 影像居民区提取
引用本文:吴樊,王超,张红. 基于纹理特征的高分辨率SAR 影像居民区提取[J]. 遥感技术与应用, 2005, 20(1): 148-152. DOI: 10.11873/j.issn.1004-0323.2005.1.148
作者姓名:吴樊  王超  张红
作者单位:(1.中国科学院遥感应用研究所, 遥感科学国家重点实验室, 北京 100101; 2.中国科学院中国遥感卫星地面站, 北京 100086; 3. 北京师范大学地理学与遥感科学学院, 遥感科学国家重点实验室, 北京 100875)
基金项目:国家重点基础研究发展规划项目(2001CB309406),中国科学院知识创新工程重要方向项目(KZCX2-309),国家自然科学基金项目(40071062)的联合资助。
摘    要:
利用灰度共生矩阵计算高分辨率SAR 图像的纹理特征, 通过统计分析选取合适的特征矢量,并基于非监督聚类分析提取居民区。对提取的居民区以一定的面积阈值剔除噪声(细小区域) , 并利用形态学算子对提取边界进行适当的归整, 得到最终结果。在对应的光学图像上人工提取居民区范围, 以此作为实验结果的评价标准。实验结果表明本方法可以得到较好的效果。


关 键 词:共生矩阵  SAR  纹理特征  居民地   
文章编号:1004-0323(2005)01-0148-05
修稿时间:2004-09-22

Residential Areas Extraction In High Resolution SAR Image Based on Texture Features
WU Fan,WANG Chao,ZHANG Hong. Residential Areas Extraction In High Resolution SAR Image Based on Texture Features[J]. Remote Sensing Technology and Application, 2005, 20(1): 148-152. DOI: 10.11873/j.issn.1004-0323.2005.1.148
Authors:WU Fan  WANG Chao  ZHANG Hong
Affiliation:(1. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, Ch ina; 2. China Remote Sensing Satellite Ground Station, Beijing 100086, China; 3. State Key Laboratory of Remote Sensing Science, College of Geography and Remote Sensing , Beijing Normal  university , Beijng 100875, China)
Abstract:
With the resolution of SAR image is improving, the inner structure of residential area shows more complex in high-resolution SAR images than low ones. An approach is proposed to extracting residential area based on SAR texture features extracted from the Gray Level Co-occurrence Matrix (GLCM). Firstly, six texture features such as energy, entropy, contrast, variance, correlation, and inverse difference moment are investigated. Secondly, the three GLCM parameters: window size, step and angle are decided. Thirdly, the feature vector is reduced from six to two. Then an unsupervised analysis is applied to the data to extract the residential area. Finally the small areas are deleted, and morphological operators are applied to adjust the sketch of the extracted area. The proposed method has been tested by using airborne SAR data at 3 m resolution.
Keywords:Gray level co-occurrence matrix (GLCM)   Synthetic aperture radar(SAR)   Texture feature   Residential areas
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《遥感技术与应用》浏览原始摘要信息
点击此处可从《遥感技术与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号