首页 | 本学科首页   官方微博 | 高级检索  
     


Specialized electron beam nanolithography for EUV and X-ray diffractive optics
Authors:Anderson  EH
Affiliation:Center for X-Ray Opt., Lawrence Berkeley Nat. Lab., CA, USA;
Abstract:Diffraction of electromagnetic radiation remains a viable method for manipulation and focusing of extreme ultraviolet and X-ray wavelengths where the optical properties preclude significant phase shift without attenuation. As the wavelength becomes smaller, the characteristic dimensions needed for effective utilization of diffraction proportionally shrink, placing significant demands on the half-pitch of the diffractive structure. State-of-the-art nanofabrication technology is then required. Additionally, line placement over the entire grating, zone plate lens, or other diffractive element requires an accuracy on the order of a small fraction of a linewidth over the entire structure. This places a heavy burden on the alignment and calibration of the pattern-generating tool. In the case of zone plate lenses, smooth curved geometric elements are required. Specialized techniques for electron beam lithography have been developed to meet these demands, which diverge from the technology used to meet the challenges encountered in mask making and electronic circuit research. The techniques are in four areas: on axis calibration, beam placement, subpixel image processing for overlay, and smooth generation of arc shapes. Using the ensemble of these specialized techniques, high-resolution electron beam lithography nanofabrication has been used to successfully make diffractive structures with linewidths approaching 10 nm and near diffraction limited optical performance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号