首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊神经网络生物嗅觉的智能电子鼻的研究
引用本文:彭继慎,郑小虎,刘鉴. 基于模糊神经网络生物嗅觉的智能电子鼻的研究[J]. 计算机测量与控制, 2012, 20(1): 25-27
作者姓名:彭继慎  郑小虎  刘鉴
作者单位:辽宁工程技术大学电气与控制学院,辽宁葫芦岛,125105
摘    要:
通过研究鼻道结构对生物嗅觉的影响,构造了装有传感器阵列的电子鼻流道和控制装置,实现了嗅觉区域气体流量和气味分子浓度的主动控制,提高了嗅觉灵敏度;根据生物嗅觉系统的模糊性质在嗅觉感知中所起的关键作用,构建了更接近生物嗅觉的模糊优化神经网络算法,使电子鼻系统更具仿生特性,实现了电子鼻动态检测的目标;实验结果表明,该电子鼻不仅具有辨识的快速性,还提高了自适应辨识精度,从而能够准确做出预报。

关 键 词:传感器  模糊神经网络  电子鼻  自适应  气味识别

Intelligent Electronic Nose Based on FNN-biological Smell
Peng Jishen , Zheng Xiaohu , Liu Jian. Intelligent Electronic Nose Based on FNN-biological Smell[J]. Computer Measurement & Control, 2012, 20(1): 25-27
Authors:Peng Jishen    Zheng Xiaohu    Liu Jian
Affiliation:(Institute of Electrical and Control,Liaoning technical university,HuLudao 125105,China)
Abstract:
By studying the structure of the nasal passages of biological olfactory constructed with the electronic nose sensor array and flow control devices to achieve the olfactory region of molecular gas flow and the concentration of the active control odor and improve the sense of smell sensitivity.According to the chaotic nature of biological olfactory system,olfactory perception in the key role played by the constructed closer to the fuzzy optimization of biological olfactory neural network algorithm,the more bionic features electronic nose system to achieve the goal of dynamic detection of electronic nose.The results show that: the electronic nose is not only the rapid identification,but also improve the accuracy of the adaptability which helps accurately make a prediction.
Keywords:sensors  fuzzy neural network  electronic nose  adaptive  odor recognition
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号