首页 | 本学科首页   官方微博 | 高级检索  
     

求解分数阶微分系统的一种数值算法
引用本文:覃迺智,周尚波. 求解分数阶微分系统的一种数值算法[J]. 计算机技术与发展, 2011, 21(1)
作者姓名:覃迺智  周尚波
作者单位:1. 南宁地区教育学院,数学与计算机科学系,广西,南宁,530001
2. 重庆大学,计算机学院,重庆,400044
摘    要:
由于分数阶微分系统具有记忆功能,在其求解过程中计算量较大.文中的目的是针对分数阶Grunwald-Letnikov(6L)定义,研究并寻求一种求解分数阶微分方程的有效数值算法.首先由分数阶GL定义得出分数阶的数值计算公式,进而从理论上分析了算法中分数阶项计算系数的特点,结合计算机数值仿真的结果,得出了远离当前时间的无穷小项一般不可忽略的结论,并设计了一种合理有效的计算方法.计算机数值仿真的结果表明,所设计的求解分数阶微分方程的算法精度高,通用性好,且易于编程实现.

关 键 词:分数阶微分  系数  数值算法

Numerical Algorithm for Solving Fractional Order Differential Systems
QIN Nai-zhi,ZHOU Shang-bo. Numerical Algorithm for Solving Fractional Order Differential Systems[J]. Computer Technology and Development, 2011, 21(1)
Authors:QIN Nai-zhi  ZHOU Shang-bo
Abstract:
Keywords:
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号