Hydrogen and electricity co-production plant integrating steam-iron process and chemical looping combustion |
| |
Authors: | Shiyi Chen Zhipeng XueDong Wang Wenguo Xiang |
| |
Affiliation: | School of Energy and Environment, Southeast University, Nanjing 210096, China |
| |
Abstract: | ![]() In this paper, steam-iron process (Fe looping) and NiO-based chemical looping combustion (Ni looping) are integrated for hydrogen production with inherent separation of CO2. An integrated combined cycle based on the Fe and Ni loopings is proposed and modeled using Aspen Plus software. The simulation results show that at Fe-SR 815 °C, Fe-FR 815 °C, Ni-FR 900 °C and Ni-AR 1050 °C without supplementary firing, the co-production plant has a net power efficiency 14.12%, hydrogen efficiency 33.61% and an equivalent efficiency 57.95% without CO2 emission. At a supplementary firing temperature of 1350 °C, the net power efficiency, hydrogen efficiency and the equivalent efficiency are 27.47%, 23.39% and 70.75%, respectively; the CO2 emission is 365.36 g/kWh. The plant is attractive because of high-energy conversion efficiency and relatively low CO2 emission; moreover, the hydrogen/electricity ratio can be varied in response to demand. The influences of iron oxide recycle rate, supplementary firing temperature, inert support addition and other parameters on the system performance are also investigated in the sensitive analyses. |
| |
Keywords: | Hydrogen production Steam-iron process Chemical looping combustion Carbon capture Combined cycle |
本文献已被 ScienceDirect 等数据库收录! |
|