首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工蚁群优化算法的遥感图像自动分类
引用本文:王树根,杨耘,林颖,曹重华. 基于人工蚁群优化算法的遥感图像自动分类[J]. 计算机工程与应用, 2005, 41(29): 77-80,116
作者姓名:王树根  杨耘  林颖  曹重华
作者单位:武汉大学遥感信息工程学院,武汉,430079;扬州大学信息工程学院,江苏,扬州,225009;南昌大学信息工程学院,江西,南昌,330047
摘    要:将人工蚁群优化算法(AACO)尝试性地引入遥感图像分类,并进行了探索性研究。作为计算智能新的分支,人工蚁群优化算法具有很强的自组织性和自适应性。因此,自然成为科学工程领域一种强有力的信息处理和解决问题的手段;AACO算法利用蚂蚁的生物特性来实现遥感图像分类等非线性操作,具有并行性、鲁棒性。初步试验分析,此方法用于遥感图像分类是有效的,在一定程度上克服传统统计分类方法与ANN方法的某些不足。本文也推动人类利用群智能在遥感图像处理及相关领域的深入研究。

关 键 词:蚁群优化  人工蚁群  遥感图像  分类  外激素
文章编号:1002-8331-(2005)29-0077-04
收稿时间:2005-01-01
修稿时间:2005-01-01

Automatic Classification of Remotely Sensed Images Based on Artificial Ant Colony Algorithm
Wang Shugen,Yang Yun,Lin Ying,Cao Chonghua. Automatic Classification of Remotely Sensed Images Based on Artificial Ant Colony Algorithm[J]. Computer Engineering and Applications, 2005, 41(29): 77-80,116
Authors:Wang Shugen  Yang Yun  Lin Ying  Cao Chonghua
Affiliation:1 School of Remote Sensing Information Engineering,Wuhan University,Wuhan 430079; 2 Sehool of Information Engineering,Yangzhou University,Yangzhou,Jiangsu 225009;3 School of Information Engineering,Nanehang University,Nanchang,Jiangxi 330047
Abstract:Some initial investigations are conducted to apply Artificial Ant Colony Algorithm(AACO) for classification of remotely sensed images.As a novel branch of computational intelligence,AACO has strong capabilities of Self-organization adaptation,hence it is natural to view AACO as a powerful information processing and problem-solving method in both the scientific and engineering fields.Artificial Ant Colony Algorithm posses nonlinear classification properties along with the biological properties,being parallel operation and insensitiveness to initial condition of images.Preliminary Results indicate effectiveness and application of our method proposed and efficiently avoid some drawbacks of traditional statistical and neural network methods.In addition,our work also push research on this problem further.
Keywords:ant colony optimization  srtificial snt colony  remotely sensed image  classification  pheromone
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号