首页 | 本学科首页   官方微博 | 高级检索  
     

基于加权Fisher准则的线性鉴别分析及人脸识别
作者姓名:郭娟  林冬  戚文芽
作者单位:信息工程大学,信息工程学院,河南,郑州,450002;信息工程大学,信息工程学院,河南,郑州,450002;信息工程大学,信息工程学院,河南,郑州,450002
摘    要:提出了一种基于加权Fisher准则线性鉴别分析的人脸识别方法。该方法引入了一种新的权函数对Fisher准则加权,以提高样本在低维线性空间中的可分性,然后探讨了高维、奇异情况下如何降低运算量的问题,并给出了一个简单高效的算法。在ORL标准人脸库上进行测试,由该算法抽取的特征在最近邻分类器和最小距离分类器下均达到96%的正确识别率,这一结果优于经典的特征脸和Fisher脸方法在该库上的识别结果。

关 键 词:线性鉴别分析  加权Fisher准则  特征抽取  人脸识别
文章编号:1001-9081(2006)05-1037-03
收稿时间:2005-11-03
修稿时间:2005-11-032006-01-09
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号