首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
面向大数据处理的并行优化抽样聚类K-means算法
作者姓名:
周润物
李智勇
陈少淼
陈京
李仁发
作者单位:
湖南大学 信息科学与工程学院, 长沙 410082
基金项目:
国家自然科学基金资助项目(61173107);国家863计划项目(2012AA01A301-01)。
摘 要:
针对大数据环境下K-means聚类算法聚类精度不足和收敛速度慢的问题,提出一种基于优化抽样聚类的K-means算法(OSCK)。首先,该算法从海量数据中概率抽样多个样本;其次,基于最佳聚类中心的欧氏距离相似性原理,建模评估样本聚类结果并去除抽样聚类结果的次优解;最后,加权整合评估得到的聚类结果得到最终
k
个聚类中心,并将这
k
个聚类中心作为大数据集聚类中心。理论分析和实验结果表明,OSCK面向海量数据分析相对于对比算法具有更好的聚类精度,并且具有很强的稳健性和可扩展性。
关 键 词:
大数据
K-均值
概率抽样
欧氏距离
聚类精度
收稿时间:
2015-08-29
修稿时间:
2015-09-14
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号