基于可视化异类特征优选融合的滚动轴承故障诊断 |
| |
作者姓名: | 杨洪柏 张宏利 刘树林 |
| |
作者单位: | 1. 上海开放大学 理工学院, 上海 200433;2. 上海大学 机电工程与自动化学院, 上海 200072 |
| |
基金项目: | 国家自然科学基金资助项目(51575331)。 |
| |
摘 要: | 针对故障诊断过程中基于简单的多类故障特征联合决策存在特征集维数多、数据冗余、故障识别率不高的缺点,提出了一种基于异类特征优选融合的故障诊断方法。该方法根据多类特征数据的轮廓图,分析各维特征数据的聚类特性,去除聚类性弱、对故障区分无益的冗余特征维度,仅保留聚类性强的特征维度用于故障识别。在轴承故障诊断实验中,选用故障信号时域统计量和小波包能量两类多维特征进行优选融合,并采用反向传播(BP)神经网络进行故障模式识别。故障识别率达到100%,显著高于无特征优选的故障诊断方法。实验结果表明所提出的方法简便易行,可以显著提高故障识别率。
|
关 键 词: | 异类特征 特征融合 模式识别 故障诊断 滚动轴承 |
收稿时间: | 2016-09-19 |
修稿时间: | 2016-12-22 |
|
| 点击此处可从《计算机应用》浏览原始摘要信息 |
|
点击此处可从《计算机应用》下载全文 |
|