基于地理社交网络的频繁位置隐私保护算法 |
| |
作者姓名: | 宁雪莉 罗永龙 邢凯 郑孝遥 |
| |
作者单位: | 1. 安徽师范大学 数学计算机科学学院, 安徽 芜湖 241002;2. 网络与信息安全安徽省重点实验室(安徽师范大学), 安徽 芜湖 241002 |
| |
基金项目: | 国家自然科学基金资助项目(61672039,61370050,61772034);安徽省自然科学基金资助项目(KJ2017A327);芜湖市科技计划项目(2015cxy10)。 |
| |
摘 要: | 针对地理社交网络中以频繁位置为背景知识的攻击导致用户身份泄露的问题,提出一种基于地理社交网络的频繁位置隐私保护算法。首先,根据用户对位置访问的频次设置频繁位置并为每个用户建立频繁位置集合;然后按照背景知识的不同,将频繁位置的子集组成超边,把不满足匿名参数k的超边以用户偏离和位置偏离最小值为优化目标进行超边重组;最后,通过仿真实验表明,与(k,m)-anonymity算法相比,在频繁位置为3的情况下,该算法在Gowalla数据集上用户偏离度以及位置偏离度分别平均降低了约19.1%和8.3%,在Brightkite数据集上分别平均降低了约22.2%和10.7%,因此所提算法能够有效保护频繁位置的同时降低用户和位置偏离度。
|
关 键 词: | 地理社交网络 隐私保护 k-匿名 位置泛化 位置隐私 |
收稿时间: | 2017-07-10 |
修稿时间: | 2017-09-15 |
|
| 点击此处可从《计算机应用》浏览原始摘要信息 |
|
点击此处可从《计算机应用》下载全文 |
|