首页 | 本学科首页   官方微博 | 高级检索  
     


Ultradispersed particles in heavy oil: Part II, sorption of H2S(g)
Authors:Nashaat N. Nassar  Maen M. Husein  Pedro Pereira-Almao
Affiliation:a Alberta Ingenuity Centre for In-Situ Energy, University of Calgary, Calgary, Alberta, Canada
b Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
Abstract:During steam assisted gravity drainage for heavy oil recovery aqua-thermolysis reactions take place, whereupon gaseous hydrogen sulfide, H2S(g), is produced. A method to capture H2S(g) and convert it into a chemically inactive species is deemed necessary for sustaining in-situ recovery and upgrading. Part I of the current study explored the formation and stabilization of colloidal FeOOH particles in heavy oil matrices. In this Part, we evaluate the H2S(g) sorption ability of these particles as well as other metal oxide/hydroxide particles. Furthermore, the effect of mixing and temperature on H2S(g) sorption was investigated. Results showed that the rate and capacity of H2S(g) sorption increased as the concentration of FeOOH increased. Mixing, on the other hand, had insignificant effect on the sorption capacity, however it improved the sorption kinetics. In addition, in-situ prepared colloidal particles showed better reactivity towards H2S(g) than commercial α-Fe2O3 nanoparticles. Temperature had an adverse effect on the H2S(g) sorption capacity of FeOOH. This was attributed to a change in chemical structure of FeOOH as the temperature increased. Nevertheless, in-situ prepared ZnO colloidal particles completely removed H2S(g) even at high temperatures.
Keywords:H2S   Sorption   Heavy oil   Metal oxide   Sorbent
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号