基于单状态HMM的音频分类方法研究 |
| |
作者姓名: | 郑继明 李瑞仙 蒲兴成 |
| |
作者单位: | 重庆邮电大学,应用数学研究所,重庆,400065;重庆邮电大学,计算机科学与技术学院,重庆,400065 |
| |
基金项目: | 重庆市教育委员会科学技术研究项目 |
| |
摘 要: | 经典的隐马尔可夫模型(HMM)是一种基于统计信号的模型,它在基于内容的音频检索系统中具有重要的作用。根据音频分类重类型轻内容的特性,将单状态的HMM用于音频分类,克服了多状态HMM在模型初始化时状态初始概率和转移概率赋值带有假设不准确的缺点。实验结果表明基于单状态的HMM模型音频分类方法能有效地减少误识率,提高音频分类的精确度。
|
关 键 词: | 隐马尔可夫模型 音频分类 单状态 |
收稿时间: | 2008-08-14 |
本文献已被 CNKI 维普 万方数据 等数据库收录! |
| 点击此处可从《计算机应用》浏览原始摘要信息 |
|
点击此处可从《计算机应用》下载全文 |
|