首页 | 本学科首页   官方微博 | 高级检索  
     

病态盲分离情况下的混合矩阵估计研究
引用本文:白 琳,陈 豪.病态盲分离情况下的混合矩阵估计研究[J].计算机工程与应用,2011,47(22):133-136.
作者姓名:白 琳  陈 豪
作者单位:中国空间技术研究院 西安分院,西安 710000
摘    要:在盲信号分离技术中,当混合矩阵是病态情况时,基于信号稀疏性的两步法可用来解决这一问题,而如何估计混合矩阵则是两步法的关键。提出了一种估计混合矩阵的新方法,即通过搜索重构观测信号采样点,每次只需搜索出少数某源信号取值占优的采样点,就可以通过这些采样点处的重构观测信号数据,估计出混合矩阵的某一列。依次类推,可以估计出整个混合矩阵。该方法估计混合矩阵时对源信号的稀疏度要求较低,其实现算法不需优化过程,计算简单,因此其实用性较高。仿真结果表明了该方法有效,有很好的性能。通过大量的仿真试验给出了方法的定量性能分析。

关 键 词:混合矩阵  病态盲分离  稀疏性  估计  搜索重构观测信号  
修稿时间: 

Research on estimation of mixing matrix on ill-conditioned BSS
BAI Lin,CHEN Hao.Research on estimation of mixing matrix on ill-conditioned BSS[J].Computer Engineering and Applications,2011,47(22):133-136.
Authors:BAI Lin  CHEN Hao
Affiliation:Xi’an Division of China Academy of Space Technology,Xi’an 710000,China
Abstract:Based on the sparse character of the signals,a two-stage method can be used to accomplish Blind Signal Separation(BSS) when the mixing matrix is ill-conditioned case.The key of the method is the estimation of the mixing matrix.A new kind of method of estimating the mixing matrix is put forward.A column of the mixing matrix is estimated by searching observation signals newly constructed and finding some sampling data of certain source dominating.Other columns can be similarly estimated.The method needs less sparseness of signals and less computation of algorithm free of optimizing process.Simulation results illustrate the efficiency and the good performance of the algorithm.The quantitative analysis about the performance of the method is made by many simulation results.
Keywords:mixing matrix  ill-conditioned Blind Signal Separation(BSS)  sparseness  estimation  searching newly constructed observation signals
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号