Reoptimization of Steiner trees: Changing the terminal set |
| |
Authors: | Hans-Joachim Bö ckenhauer,Juraj Hromkovič,Richard Krá lovič,Tobias Mö mke,Peter Rossmanith |
| |
Affiliation: | 1. Department of Computer Science, ETH Zurich, Switzerland;2. Department of Computer Science, RWTH Aachen, Germany |
| |
Abstract: | Given an instance of the Steiner tree problem together with an optimal solution, we consider the scenario where this instance is modified locally by adding one of the vertices to the terminal set or removing one vertex from it. In this paper, we investigate the problem of whether the knowledge of an optimal solution to the unaltered instance can help in solving the locally modified instance. Our results are as follows: (i) We prove that these reoptimization variants of the Steiner tree problem are NP-hard, even if edge costs are restricted to values from {1,2}. (ii) We design 1.5-approximation algorithms for both variants of local modifications. This is an improvement over the currently best known approximation algorithm for the classical Steiner tree problem which achieves an approximation ratio of 1+ln(3)/2≈1.55. (iii) We present a PTAS for the subproblem in which the edge costs are natural numbers {1,…,k} for some constant k. |
| |
Keywords: | Approximation algorithms Reoptimization Steiner tree |
本文献已被 ScienceDirect 等数据库收录! |
|