首页 | 本学科首页   官方微博 | 高级检索  
     


Electromigration-Induced Interfacial Reactions in Cu/Sn/Electroless Ni-P Solder Interconnects
Authors:M L Huang  S M Zhou  L D Chen
Affiliation:1.Electronic Packaging Materials Laboratory, School of Materials Science & Engineering,Dalian University of Technology,Dalian,China
Abstract:The effect of electromigration (EM) on the interfacial reaction in a line-type Cu/Sn/Ni-P/Al/Ni-P/Sn/Cu interconnect was investigated at 150°C under 5.0 × 103 A/cm2. When Cu atoms were under downwind diffusion, EM enhanced the cross-solder diffusion of Cu atoms to the opposite Ni-P/Sn (anode) interface compared with the aging case, resulting in the transformation of interfacial intermetallic compound (IMC) from Ni3Sn4 into (Cu,Ni)6Sn5. However, at the Sn/Cu (cathode) interface, the interfacial IMCs remained as Cu6Sn5 (containing less than 0.2 wt.% Ni) and Cu3Sn. When Ni atoms were under downwind diffusion, only a very small quantity of Ni atoms diffused to the opposite Cu/Sn (anode) interface and the interfacial IMCs remained as Cu6Sn5 (containing less than 0.6 wt.% Ni) and Cu3Sn. EM significantly accelerated the dissolution of Ni atoms from the Ni-P and the interfacial Ni3Sn4 compared with the aging case, resulting in fast growth of Ni3P and Ni2SnP, disappearance of interfacial Ni3Sn4, and congregation of large (Ni,Cu)3Sn4 particles in the Sn solder matrix. The growth kinetics of Ni3P and Ni2SnP were significantly accelerated after the interfacial Ni3Sn4 IMC completely dissolved into the solder, but still followed the t 1/2 law.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号