首页 | 本学科首页   官方微博 | 高级检索  
     


Operation Principles of 0.18-$muhboxm$Four-Transistor CMOS Image Pixels With a Nonfully Depleted Pinned Photodiode
Abstract:The operation principles of the four-transistor (4-TR) pixel CMOS image sensor, fabricated by 0.18-mum technology, were investigated by pixel-level characterization utilizing a single-pixel test pattern. It was found that the pixel's dark current level is strongly influenced by the gate bias (VTX(on)) of the transfer (TX) transistor at a fixed supply voltage (VDD). The largest dark current occurred at a conventional bias condition of VTX(on)=VDD=2.5V, but the dark current level was reduced by less than one-third at VTX(on)=2.1V without degrading the pixel's charge transfer capabilities. Attributed to the dark current reduction, the fixed-pattern noise (FPN) of pixel was also decreased by up to 13.3 dB. These improvements can be explained by the more effective reset of pinned photodiode (PPD) at VTX(on)=2.1V, especially in the pixel with VDD of 2.5 V or lower in which the full depletion of PPD becomes more and more difficult. In this bias condition, namely nonfully depletion PPD condition, the TX transistor was proven to operate in the "deepest depletion" mode by effectively suppressing the electron injection from floating diffusion node to channel. Moreover, various driving signals to the TX transistor were applied to do more detailed physical analysis of the pixel operation. Since the dark current and FPN are main bottlenecks in most CMOS image sensors, the proposed method is expected to efficiently improve the performance of 4-TR CMOS image pixels under 2.5 V or lower operational voltages
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号