首页 | 本学科首页   官方微博 | 高级检索  
     

基于梯度融合规则的医学图像融合方法*
引用本文:汪亮亮,张贵仓,贾雯晓. 基于梯度融合规则的医学图像融合方法*[J]. 计算机应用研究, 2018, 35(7)
作者姓名:汪亮亮  张贵仓  贾雯晓
作者单位:西北师范大学,西北师范大学数学与统计学院,西北师范大学
基金项目:甘肃省自然科学基金;甘肃省科技计划资助项目
摘    要:为了更好地满足临床诊断和治疗的需要,本文提出了一种在图像融合阶段对测量值进行自适应梯度加权和图像重建时采用CoSaMP重建算法相结合的方法。该算法首先对两幅源图像分块并进行稀疏表示,同时利用观测矩阵进行测量。在测量数据融合阶段引入图像梯度来反应图像本身的边界信息,先计算每幅分块子图像的梯度;然后利用自适应梯度加权的融合规则得到融合的测量数据,并对融合测量数据进行随机压缩采样;最后通过CoSaMP算法对采样数据进行信息重构实现测量数据的恢复。该方法克服了图像融合时信息畸变的缺陷,并且可以根据不同融合区域自动调整融合规则的权重系数,有效地避免了设置固定权重系数造成的融合误差。实验结果和评价指标验证了本文算法的有效性和先进性。

关 键 词:压缩感知;自适应梯度;CoSaMP算法;医学图像融合
收稿时间:2017-01-21
修稿时间:2018-06-04

Medical image fusion method based on gradient fusion rules
Affiliation:Northwest Normal University,,
Abstract:To better meet the demands of clinical diagnosis and treatment, we propose a method of combining the adaptive gradient weighting of the measured values and the CoSaMP reconstruction algorithm. Firstly, the source images are compressed by compressive sensing. In the measured data fusion phase, the gradient-based weights are obtained by compositing the gradients of each image, and then the measurement matrix of the fused image are obtained by the self-adaptive gradient . Finally, it uses a CoSaMP-based image reconstruction algorithm to achieve the recovery of the data. The method overcomes the defects of the information distortion in the image fusion, and can automatically adjust the weight coefficient of the fusion rules according to the different fusion areas.The experimental results and evaluation results show that the proposed algorithm is effective and advanced.
Keywords:Compressive sensing   Self-adaptive gradient   CoSaMP algorithm   Medical image fusion
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号