首页 | 本学科首页   官方微博 | 高级检索  
     

基于信噪比估计的自适应频谱感知算法
引用本文:倪水平,常慧刚,徐玉平. 基于信噪比估计的自适应频谱感知算法[J]. 计算机应用研究, 2018, 35(9)
作者姓名:倪水平  常慧刚  徐玉平
作者单位:河南理工大学 计算机科学与技术学院,河南理工大学 计算机科学与技术学院,河南理工大学 计算机科学与技术学院
基金项目:国家自然科学基金资助项目
摘    要:
针对传统能量检测不能对低信噪比条件下的信号进行准确感知,容易造成误判的缺点。为了提高在低信噪比条件下的频谱感知性能并缩短感知时间,结合循环特征检测具有较高的检测性能和鲁棒性但计算复杂度高的特点,提出了基于信噪比预估计的自适应频谱感知算法。该算法通过预估计待检信号与信道噪声的信噪比,当高于信噪比选择阈值时,采用改进后的自适应门限能量检测,降低运算复杂度;若低于选择阈值则进行循环特征检测,保证良好的检测精度;并可以根据系统对检测精度和感知速率的要求,自适应调整选择阈值的大小。仿真结果表明,所提算法有效的提高了低信噪比条件下频谱感知的准确性,缩短了平均感知时间。

关 键 词:信噪比;频谱感知;自适应算法;感知时间;自适应能量检测;循环特征检测
收稿时间:2017-04-24
修稿时间:2018-08-04

Adaptive spectrum sensing algorithm based on SNR estimation
NI Shui-ping,CHANG Hui-gang and XU Yu-ping. Adaptive spectrum sensing algorithm based on SNR estimation[J]. Application Research of Computers, 2018, 35(9)
Authors:NI Shui-ping  CHANG Hui-gang  XU Yu-ping
Affiliation:School of Computer Science and Technology, Henan Polytechnic University,,
Abstract:
Considering of the traditional energy detection cannot accurately perceive the signal under the condition of low signal to noise ratio (SNR). It can easily lead to misjudgment. In order to improve the performance of spectrum sensing in low SNR conditions and shorten the sensing time, combined the cyclic feature detection has high detection performance and robustness but with high computational complexity. This paper developed an adaptive spectrum sensing algorithm based on SNR estimation. It calculated the pre estimation ratio of detection signal to noise signal. When the SNR is higher than the threshold value, the improved adaptive energy detection was performed to reduce the computational complexity, otherwise selected cyclic feature detection to ensure good accuracy. It could according to the requirements of the detection accuracy and efficiency of the sensing system adjusted the size of the selection threshold adaptively. Simulation experiments show that proposed algorithm can effectively improve the accuracy of spectrum sensing under low SNR and shorten the average detection time.
Keywords:signal-to-noise ratio   spectrum sensing   adaptive algorithms   detection time   adaptive energy detection   cyclostationary feature detection
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号