首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习方法的复杂场景下车辆目标检测
引用本文:张向清. 基于深度学习方法的复杂场景下车辆目标检测[J]. 计算机应用研究, 2018, 35(4)
作者姓名:张向清
作者单位:Chang’an University
基金项目:国家自然科学基金项目(61572083),陕西省自然科学基础研究计划项目(2015JZ018,2015JQ6230),中央高校基本科研业务费资助项目(310824152009,310824163411)
摘    要:
近年来,深度学习算法逐渐尝试应用于目标检测领域。本文针对实际交通场景下的车辆目标,应用深度学习目标分类算法中具有代表性的Faster R-CNN框架,结合ImageNet中的车辆数据集,把场景中的目标检测问题转化为目标的二分类问题,进行车辆目标的检测识别。相比传统机器学习目标检测算法,基于深度学习的目标检测算法在检测准确度和执行效率上优势明显。通过本实验结果分析表明,该方法在识别精度以及速度上均取得了显著的提高。

关 键 词:深度学习;Faster R-CNN;ImageNet数据集;车辆目标检测
收稿时间:2016-11-18
修稿时间:2018-03-03

Vehicle Detection Based on Deep Learning in Complex Scene
Abstract:
In recent years, Deep Learning algorithm has been widely used in the field of object detection.In this paper, vehicle objects come from the real traffic scene, Applied the Faster R-CNN framework, which was a representative of the deep learning object classification algorithm, and combined with the ImageNet dataset, converted object detection problem into a binary classification problem in the scene to detection and recognization. Compared with target detection algorithm in traditional machine learning, it has obvious advantages in detection accuracy and execution efficiency based on deep learning.The experimental results show the method has achieved a remarkable improvement in both recognition accuracy and speed.
Keywords:deep learning  faster R-CNN  imageNet dataset  vechile object detection
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号