首页 | 本学科首页   官方微博 | 高级检索  
     

隐马尔可夫模型在自然语言理解研究中的应用
引用本文:卢微. 隐马尔可夫模型在自然语言理解研究中的应用[J]. 电脑与信息技术, 2007, 15(1): 33-35
作者姓名:卢微
作者单位:河北大学人文学院,河北,保定,071002
摘    要:自然语言理解是人工智能最活跃的研究领域之一,同时也是目前前沿的课题之一.该领域的研究人员通过对隐马尔可夫模型这一数学模型的跨领域应用,解决了自然语言理解中的瓶颈问题.文章系统阐述了隐马尔可夫模型的原理以及在语音识别和词性标注方面应用的过程,从而为更多研究者了解和认识.

关 键 词:隐马尔可夫模型(HMM)  自然语言理解  语音识别  词性标注
文章编号:1005-1228(2007)01-0033-03
修稿时间:2006-10-02

The Application of HMM in Comprehension of Natural Language
LU Wei. The Application of HMM in Comprehension of Natural Language[J]. Computer and Information Technology, 2007, 15(1): 33-35
Authors:LU Wei
Affiliation:College of Liberal Arts,Hebei University,Baoding,Hebei 071002,China
Abstract:Comprehension of natural language is one of the most active fields in the research of artificial intelligence,it is also one of the difficult problem on present forward position. Researchers apply such mathematic model as Hidden Markov Model to this field and solve the key problem in the field of comprehension of natural language.This article systematicly expounds the principle of the mathematic model-HMM and process of its application in the aspects of speech recognition and part-of-speech tagging,so more researchers will have a better understanding about HMM.
Keywords:Hidden Markov Model   comprehension about natural language   speech recognition   part-of-speech tagging
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号