首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen induced ductility losses in austenitic stainless steel welds
Authors:John A. Brooks  Anton J. West
Affiliation:(1) Materials Science Division—8316, Sandia National Laboratories, 94550 Livermore, CA;(2) Materials Development Division II—8314, Sandia National Laboratories, 94550 Livermore, CA
Abstract:The effect of hydrogen on the tensile behavior of austenitic stainless steel welds was studied in two AISI 300 series alloys and two nitrogen strengthened alloys. The microstructure of these welds typically contained several percent ferrite in an austenite matrix. Hydrogen was found to reduce the ductility of all welds; however, the severity of ductility loss increased with increasing tendency to deform via a planar slip mode. In materials exhibiting large degrees of slip planarity, 304L and 308L, hydrogen changed the fracture mode from dimple rupture to a mixed mode of ductile and brittle fracture associated with the austenite-ferrite interface. The two alloys, 22-13-5 and 309S, which tend to deform by cross slip mechanisms, showed smaller losses in ductility even though hydrogen assisted the ductile rupture process by aiding void growth and coalescence, without changing the fracture mode. Varying the amount of ferrite from approximately one to 10 pct had no significant effect on performance in hydrogen.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号