首页 | 本学科首页   官方微博 | 高级检索  
     


Learning context-free grammars using tabular representations
Authors:Yasubumi Sakakibara [Author Vitae]
Affiliation:Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
Abstract:We present a novel algorithm using new hypothesis representations for learning context-free grammars from a finite set of positive and negative examples. We propose an efficient hypothesis representation method which consists of a table-like data structure similar to the parse table used in efficient parsing algorithms for context-free grammars such as Cocke-Younger-Kasami algorithm. By employing this representation method, the problem of learning context-free grammars from examples can be reduced to the problem of partitioning the set of nonterminals. We use genetic algorithms for solving this partitioning problem. Further, we incorporate partially structured examples to improve the efficiency of our learning algorithm, where a structured example is represented by a string with some parentheses inserted to indicate the shape of the derivation tree of the unknown grammar. We demonstrate some experimental results using these algorithms and theoretically analyse the completeness of the search space using the tabular method for context-free grammars.
Keywords:Grammatical inference   Context-free grammar   Genetic algorithm   Structured example   Dynamic programming
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号