首页 | 本学科首页   官方微博 | 高级检索  
     


Image retrieval based on incremental subspace learning
Authors:Ke Lu [Author Vitae]  Xiaofei He [Author Vitae]
Affiliation:a School of Computer Science and Engineering, University of Electronic Science & Technology of China, No.4 Section 2 Jianshe North Road, Chengdu, Sichuan 610054, China
b Department of Computer Science, The University of Chicago, 1100 E 58th Street, Chicago, IL 60637, USA
Abstract:Many problems in information processing involve some form of dimensionality reduction, such as face recognition, image/text retrieval, data visualization, etc. The typical linear dimensionality reduction algorithms include principal component analysis (PCA), random projection, locality-preserving projection (LPP), etc. These techniques are generally unsupervised which allows them to model data in the absence of labels or categories. In this paper, we propose a semi-supervised subspace learning algorithm for image retrieval. In relevance feedback-driven image retrieval system, the user-provided information can be used to better describe the intrinsic semantic relationships between images. Our algorithm is fundamentally based on LPP which can incorporate user's relevance feedbacks. As the user's feedbacks are accumulated, we can ultimately obtain a semantic subspace in which different semantic classes can be best separated and the retrieval performance can be enhanced. We compared our proposed algorithm to PCA and the standard LPP. Experimental results on a large collection of images have shown the effectiveness and efficiency of our proposed algorithm.
Keywords:Locality preserving projections   Image retrieval   Relevance feedback   Subspace learning   Principal component analysis   Linear discriminant analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号