首页 | 本学科首页   官方微博 | 高级检索  
     

结合奇异值分解和二维变分模态分解的紧凑图像哈希算法
引用本文:赵琰,周晓炜. 结合奇异值分解和二维变分模态分解的紧凑图像哈希算法[J]. 上海电力学院学报, 2021, 37(3): 295-302
作者姓名:赵琰  周晓炜
作者单位:上海电力大学 电子与信息工程学院
基金项目:国家自然科学基金(61802250)。
摘    要:图像哈希是通过将图像提取为简短数列,从而快速地从图库中区分出与原图相似或不同图像的方法。利用奇异值分解(SVD)来分解重构减小图像信息的冗余性和二维变分模态分解(2D-VMD)可以将图像分解成一系列不同中心频率的子模态的特性,从时域和频域提取出图像的主要信息序列来构成哈希。仿真结果表明,相比于其他方法,通过SVD和2D-VMD的紧凑图像哈希算法具有较短的运行时间、较好的鲁棒性和唯一性。

关 键 词:图像哈希  奇异值分解  二维变分模态分解  子模态
收稿时间:2020-02-28

A Compact Image Hash Algorithm Combining SVD and Two-dimensional Variational Mode Decomposition
ZHAO Yan,ZHOU Xiaowei. A Compact Image Hash Algorithm Combining SVD and Two-dimensional Variational Mode Decomposition[J]. Journal of Shanghai University of Electric Power, 2021, 37(3): 295-302
Authors:ZHAO Yan  ZHOU Xiaowei
Affiliation:School of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Abstract:Image hashing is a method to quickly distinguish images similar to or different from the original image from a gallery by extracting images into short sequences.Singular value decomposition (SVD) is used to reduce the redundancy of image information and 2D variational mode decomposition (2D-VMD) can decompose the image into a series of sub-modes of different center frequencies, and extract the main information sequence of image from time domain and frequency domain to form hash.The simulation results show that this method has shorter running time, better robustness and uniqueness than other methods.
Keywords:image hash  singular value decomposition  2D-variational mode decomposition  sub-mode
本文献已被 CNKI 等数据库收录!
点击此处可从《上海电力学院学报》浏览原始摘要信息
点击此处可从《上海电力学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号