首页 | 本学科首页   官方微博 | 高级检索  
     


Liquid-liquid phase transition in supercooled silicon
Authors:Sastry Srikanth  Austen Angell C
Affiliation:Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bangalore 560064, India. sastry@jncasr.ac.in
Abstract:Silicon in its liquid and amorphous forms occupies a unique position among amorphous materials. Obviously important in its own right, the amorphous form is structurally close to the group of 4-4, 3-5 and 2-6 amorphous semiconductors that have been found to have interesting pressure-induced semiconductor-to-metal phase transitions. On the other hand, its liquid form has much in common, thermodynamically, with water and other 'tetrahedral network' liquids that show density maxima. Proper study of the 'liquid-amorphous transition', documented for non-crystalline silicon by both experimental and computer simulation studies, may therefore also shed light on phase behaviour in these related materials. Here, we provide detailed and unambiguous simulation evidence that the transition in supercooled liquid silicon, in the Stillinger-Weber potential, is thermodynamically of first order and indeed occurs between two liquid states, as originally predicted by Aptekar. In addition we present evidence to support the relevance of spinodal divergences near such a transition, and the prediction that the transition marks a change in the liquid dynamic character from that of a fragile liquid to that of a strong liquid.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号