首页 | 本学科首页   官方微博 | 高级检索  
     

基于多特征结合的损毁建筑物检测
引用本文:刘宇,曹国,周丽存,曲宝珠. 基于多特征结合的损毁建筑物检测[J]. 计算机应用, 2015, 35(9): 2652-2655. DOI: 10.11772/j.issn.1001-9081.2015.09.2652
作者姓名:刘宇  曹国  周丽存  曲宝珠
作者单位:南京理工大学 计算机科学与工程学院, 南京 210094
基金项目:国家自然科学基金资助项目(61003108,61371168);公安部应用创新计划项目(2013YYCXGASS097);上海市自然科学基金资助项目(13ZR1410400)。
摘    要:针对震后高分辨率遥感图像的建筑物损毁区域,提出一种基于多特征结合的损毁建筑物检测方法。首先使用形态学属性剖面(MAP)与局部二值模式(LBP)算子提取图像中的几何特征与纹理特征;然后使用随机森林(RF)分类器提取损毁的建筑物,形成初步结果;最后针对分割的对象,根据对象损毁像元所占的比例获取最终的损毁建筑物区域。采用空间分辨率为0.1 m的玉树震后航空遥感图像进行实验。结果表明,该方法的总体精度比基于形态学剖面(MP)的方法提高了12%,能够有效检测高分辨率震后遥感图像中的损毁建筑物区域。

关 键 词:形态学属性剖面  高分辨率遥感图像  随机森林  局部二值模式  损毁房屋  
收稿时间:2015-04-24
修稿时间:2015-05-29

Building-damage detection based on combination of multi-features
LIU Yu,CAO Guo,ZHOU Licun,QU Baozhu. Building-damage detection based on combination of multi-features[J]. Journal of Computer Applications, 2015, 35(9): 2652-2655. DOI: 10.11772/j.issn.1001-9081.2015.09.2652
Authors:LIU Yu  CAO Guo  ZHOU Licun  QU Baozhu
Affiliation:School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing Jiangsu 210094, China
Abstract:To detect building-damage areas in post-seismic high-resolution remote sensing images, a building-damage detection method based on multi-features was proposed. Firstly, Morphological Attribute Profile (MAP) and Local Binary Pattern (LBP) operator were used to extract geometric features and texture features. Then, Random Forest (RF) classifier was applied to extract damaged building regions so as to form the preliminary results. At last, for segmented objects, the ultimate building-damage area was obtained by computing the damaged ratio of each object. Experiments were carried out on Yushu post-seismic aerial remote sensing images whose spatial resolution was 0.1 m. Results show that this method improves overall accuracy by 12% compared with Morphological Profile (MP)-based method. The results indicate that the proposed method can effectively detect building-damage areas with high accuracy in post-seismic high-resolution images.
Keywords:Morphological Attribute Profile (MAP)  high-resolution remote sensing image  Random Forest (RF)  Local Binary Pattern (LBP)  damaged building  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号