首页 | 本学科首页   官方微博 | 高级检索  
     


Cohesive zone with continuum damage properties for simulation of delamination development in fibre composites and failure of adhesive joints
Authors:Chengye Fan  P.-Y. Ben Jar
Affiliation:a Department of Mechanical Engineering, University of Alberta, 4-9 MECE Building, Edmonton, AB, Canada T6G 2G8
b Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G7
Abstract:
A new approach is developed to implement the cohesive zone concept for the simulation of delamination in fibre composites or crack growth in adhesive joints in tension or shear mode of fracture. The model adopts a bilinear damage evolution law, and uses critical energy release rate as the energy required for generating fully damaged unit area. Multi-axial-stress criterion is used to govern the damage initiation so that the model is able to show the hydrostatic stress effect on the damage development. The damage material model is implemented in a finite element model consisting of continuum solid elements to mimic the damage development. The validity of the model was firstly examined by simulating delamination growth in pre-cracked coupon specimens of fibre composites: the double-cantilever beam test, the end-notched flexure test and the end-loaded split test, with either stable or unstable crack growth. The model was then used to simulate damage initiation in a composite specimen for delamination without a starting defect (or a pre-crack). The results were compared with those from the same finite element model (FEM) but based on a traditional damage initiation criterion and those from the experimental studies, for the physical locations of the delamination initiation and the final crack size developed. The paper also presents a parametric study that investigates the influence of material strength on the damage initiation for delamination.
Keywords:Damage material model   Cohesive zone   Delamination   FEM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号