首页 | 本学科首页   官方微博 | 高级检索  
     

基于Web-Log Mining的N元预测模型
作者姓名:苏中  马少平  杨强  张宏江
作者单位:1. 清华大学,计算机科学与技术系,北京,100084;清华大学,智能技术与系统国家重点实验室,北京,100084
2. Simon,Fraser大学,加拿大
3. 微软中国研究院,北京,100080
基金项目:国家重点基础研究发展规划973资助项目(G1998030509)
摘    要:随着Web上用户访问信息的不断增加,特别是Web服务器可提供大量的日志文件,使得有可能对这些大数据集进行知识挖掘,例如,对用户未来的访问进行预测.提出了一种利用服务器日志文件,运用N元(N-gram)预测模型对用户未来可能进行的Web访问请求进行预测.这种模型会选择性地对用户可预测的请求进行预测,从而大大提高了预测精度.实验证明,在自然语言中普遍适用的N元预测模型同样适用于网页预测.同时,采用了一种有效的简化手段,大大压缩了模型的大小,使得5元模型和传统的2元模型大小基本相同,而预测精度提高了1倍.该结果可以广泛地运用到Web上,包括网页的预发送、预取、推荐以及Web上的caching机制.试验是建立在真实的Web日志上的,该算法无论在预测精度上还是在可适用度上都优于以往的算法.

关 键 词:Web mining  数据挖掘  预测
文章编号:1000-9825/2002/13(01)0136-06
收稿时间:2000-04-03
修稿时间:2000-04-03
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号