首页 | 本学科首页   官方微博 | 高级检索  
     

基于FPGA的事件抽取模型与加速器的设计实现
引用本文:韩哲,姜晶菲,乔林波,窦勇,许金伟,阚志刚. 基于FPGA的事件抽取模型与加速器的设计实现[J]. 计算机工程与科学, 2020, 42(11): 1941-1948
作者姓名:韩哲  姜晶菲  乔林波  窦勇  许金伟  阚志刚
作者单位:(国防科技大学计算机学院,湖南 长沙 410073)
基金项目:国家重大专项计划;预研项目
摘    要:


关 键 词:FPGA  事件抽取  膨胀门卷积神经网络  加速器  
收稿时间:2020-06-11
修稿时间:2020-07-15

Design and implementation of event extractionmodel and accelerator based on FPGA
HAN Zhe,JIANG Jing fei,QIAO Lin bo,DOU Yong,XU Jin wei,KAN Zhi gang. Design and implementation of event extractionmodel and accelerator based on FPGA[J]. Computer Engineering & Science, 2020, 42(11): 1941-1948
Authors:HAN Zhe  JIANG Jing fei  QIAO Lin bo  DOU Yong  XU Jin wei  KAN Zhi gang
Affiliation:(School of Computer,National University of Defense Technology,Changsha 410073,China)
Abstract:
Event extraction technology is important to achieve the quickly extraction of specific information, and it can be widely used in information retrieval, sentiment analysis and other scenarios. Chinese event extraction is more difficult than English event extraction due to the characteristics of Chinese language. Based on the state of the art English event extraction neural network model, a CEE DGCNN (Chinese Event Extraction based on multi layer Dilate Gated Convolutional Neural Network) is proposed, which is suitable for hardware implementation. CEE DGCNN achieves 71.71% F1 score of trigger classification on the ACE2005 Chinese corpus. The accelerator of CEE DGCNN is designed and implemented, and the model size is further optimized by quantization. The accelerator can achieve 97 GOP/s on the Xilinx XCKU115 FPGA, which is 67 times faster than CPU.
Keywords:FPGA  event extraction  dilate gated convolutional neural network  accelerator  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号