首页 | 本学科首页   官方微博 | 高级检索  
     

基于CUDA的多信道锋电位实时分类方法
引用本文:蔡瑞初,赵坤垚,黄礼泊,何炯,陈瑶. 基于CUDA的多信道锋电位实时分类方法[J]. 计算机工程与设计, 2020, 41(2): 391-396
作者姓名:蔡瑞初  赵坤垚  黄礼泊  何炯  陈瑶
作者单位:广东工业大学 计算机学院,广东 广州 510006;广东工业大学 信息工程学院,广东 广州 510006;阿里巴巴达摩院 数据库与存储实验室,新加坡 068811;广东工业大学 计算机学院,广东 广州 510006;新加坡高等数字科学中心,新加坡 138602
基金项目:广东省特支计划基金项目;广州市科技计划;广东省自然科学基金;广东省科技计划;福建省信息处理与智能控制重点实验室(闽江学院)开放课题基金项目;国家自然科学基金;广州市珠江科技新星项目
摘    要:
为提高多信道神经元锋电位分类任务的计算效率,满足其在实时场景下的应用需求,提出基于统一计算设备架构(compute unified device architecture,CUDA)的掩蔽高斯混合模型的并行化实现和优化方案。利用高维锋电位数据的稀疏特性和高斯混合模型的强抗干扰性以及良好并行性,借助GPU图形处理器,对特征掩蔽高斯混合模型(Masked Gaussian mixture model,Masked GMM)进行并行实现,进行针对性优化。实验结果表明,在32信道的锋电位数据集上,与原有的CPU串行实现相比,该方案分类速度提高了170倍左右,达到了实时计算,为高维信道锋电位实时分类提供了可行的解决方案。

关 键 词:锋电位分类  特征掩蔽高斯混合模型  图形处理单元  统一计算设备架构  实时

Multi-channel real-time spike sorting method based on CUDA
CAI Rui-chu,ZHAO Kun-yao,HUANG Li-bo,HE Jiong,CHEN Yao. Multi-channel real-time spike sorting method based on CUDA[J]. Computer Engineering and Design, 2020, 41(2): 391-396
Authors:CAI Rui-chu  ZHAO Kun-yao  HUANG Li-bo  HE Jiong  CHEN Yao
Affiliation:(School of Computer,Guandong University of Technology,Guangzhou 510006,China;School of Information Engineering,Guandong University of Technology,Guangzhou 510006,China;Database and Storage Lab,Alibaba DAMO Academy,Singapore 068811,Singapore;Advanced Digital Science Center,Singapore 138602,Singapore)
Abstract:
To improve the computational efficiency of multi-channel spike sorting task and meet its application requirements in real-time scenarios,parallel implementation and optimization of masked Gaussian mixture model based on compute unified device architecture(CUDA)was proposed.The sparse characteristics of high-dimensional frontal potential data and the strong anti-interference of Gaussian mixture model and good parallelism were utilized.The GPU graphics processor was used to implement the Masked Gaussian mixture model(Masked GMM)in parallel.Targeted optimization was carried out.Experimental results show that the classification speed of the method is improved by 170 times compared with the original CPU serial implementation on the 32-channel spike dataset,and the real-time calculation is achieved,it provides a feasible solution for high-dimensional channel real-time spike sorting.
Keywords:spike sorting  Masked GMM  GPU  CUDA  real time
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号