首页 | 本学科首页   官方微博 | 高级检索  
     


HAS QoE prediction based on dynamic video features with data mining in LTE network
Authors:Fei Wang  Zesong Fei  Jing Wang  Yifan Liu  Zhikun Wu
Abstract:Evaluation of HTTP adaptive streaming (HAS) quality of experience (QoE) over LTE network is a challenging topic because of multi-segment and multi-rate features of dynamic video sequences. Different from the traditional QoE evaluation methods based on network parameters, this paper proposes the HAS QoE prediction methods based on its dynamic video segment features with data mining. Considering the application requirement of the trade-off between accuracy and complexity, two sets of methodologies are designed to evaluate the HAS QoE including regression and classification. In regression method, we propose the evolved PSNR (ePSNR) model using differential peak signal to noise ratio (dPSNR) statistics as the segment features to evaluate HAS QoE. In classification method, we propose the improved weighted k-nearest neighbors (WkNN) by using dynamic weighted mapping according to the position of video chunk to meet the dynamic segment and rate features of HAS. In order to train and test these methods, we build a real-time HAS video-on-demand (VOD) system in LTE network and do subjective test in different video scenes. With the mean opinion score (MOS), the regression and classification methods are trained to predict the HAS QoE. The validated results show that the proposed ePSNR and WkNN methods outperform other evaluation methods.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号