首页 | 本学科首页   官方微博 | 高级检索  
     


Accurate and efficient exploit capture and classification
Authors:Yu Ding  Tao Wei  Hui Xue  Yulong Zhang  Chao Zhang  Xinhui Han
Abstract:Software exploits, especially zero-day exploits, are major security threats. Every day, security experts discover and collect numerous exploits from honeypots, malware forensics, and underground channels. However, no easy methods exist to classify these exploits into meaningful categories and to accelerate diagnosis as well as detailed analysis. To address this need, we present SeismoMeter, which recognizes both control-flowhijacking, and data-only attacks by combining approximate control-flow integrity, fast dynamic taint analysis and API sandboxing schemes. Once it detects an exploit incident, SeismoMeter generates a succinct data representation, called an exploit skeleton, to characterize the captured exploit. SeismoMeter then classifies the captured exploits into different exploit families by performing distance computing on the extracted skeletons. To evaluate the efficiency of SeismoMeter, we conduct a field test using exploit samples from public exploit databases, such as Metasploit, as well as wild-captured exploits. Our experiments demonstrate that SeismoMeter is a practical system that successfully detects and correctly classifies all these exploit attacks.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号