首页 | 本学科首页   官方微博 | 高级检索  
     


Optical and electrochromic properties of annealed lithium-molybdenum-bronze thin films
Authors:Zahid Hussain
Affiliation:(1) Department of Electrical and Electronic Engineering, Imperial College of Science, Technology, and Medicine, SW7 2BT London, United Kingdom
Abstract:Optical band gaps, Urbach inverse slopes, and coloration bands of various samples of annealed, microcrystalline LixMoO3-bronze thin films in the concentration range 0<x<0.6 were determined over the photon energy range from 0.4 eV to 4.2 eV. On investigation, it is learned that the measured, optical band gaps do not shift rigidly over the annealing temperature range 293≤T≤423 K and, therefore, do not reveal the Burstein-Moss effect or reflect any stable, crystallographic phase transformation during any investigated annealing cycle. A model relating the temperature-dependent optical gap to the real part of the refractive index has also been developed, and this model fits very well to the annealed data within a maximum error of about 20%. Next, using an oscillator model, a phonon energy of ∼0.08 eV was obtained, which is very close to the characteristic phonon energy of the material, MoO3. Using this model, it becomes more certain that the contributions to the Urbach absorption edge for the annealed-molybdenum bronzes are coming from the structural and compositional disorder. In another finding, it was found that the absorption-peak energy for the annealed data was about 1.5–1.6 eV, which is still broad and asymmetrical, and therefore, it is almost of the Mo6+ (or Mo4+)-Mo5+ intervalence or polaronic type. Using the polaron model, the half-bandwidth of the coloration bands of investigated, annealed LixMoO3-thin films was found to be almost constant, which is consistent with the nonrigid band behavior.
Keywords:MoO3            fresh Li  LixMoO3-thin films  optical properties
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号