摘 要: | 目的使萤火虫优化算法(GSO)能够适用于车辆路径问题(VRP)的求解,同时提高该算法的求解性能。方法通过对GSO算法的改进,提出求解VRP问题的混沌模拟退火萤火虫优化算法(CSAGSO)。首先,设计改进的GSO算法(IGSO)使IGSO算法能够适应VRP问题的求解;其次,在IGSO算法中引入模拟退火机制,提出模拟退火萤火虫优化算法(SAGSO),使IGSO算法可有效避免陷入局部极小并最终趋于全局最优。然后,在SAGSO算法中引入混沌机制,提出CSAGSO算法,对SAGSO算法的荧光素浓度值进行混沌初始化和混沌扰动;最后,对标准算例集进行仿真测试。结果与遗传算法、蚁群算法和粒子群算法相比,CSAGSO算法的全局寻优能力、收敛速度及稳定性均改善了50%以上。结论对GSO算法的改进是合理的,且CSAGSO算法的全局优化能力、收敛速度和稳定性均优于遗传算法、蚁群算法和粒子群算法。
|