首页 | 本学科首页   官方微博 | 高级检索  
     


Definition of the Elastic Forces in the Finite-Element Absolute Nodal Coordinate Formulation and the Floating Frame of Reference Formulation
Authors:Berzeri  Marcello  Campanelli  Marcello  Shabana  Ahmed A
Affiliation:(1) Department of Mechanical Engineering (MC251), University of Illinois at Chicago, 2039 Engineering Research Facility, 842 West Taylor Street, Chicago, IL, 60607-7022, U.S.A
Abstract:The equivalence of the finite-element formulations used inflexible multibody dynamics is the focus of this investigation. Thisequivalence will be used to address several fundamental issues related tothe deformations, flexible body coordinate systems, and the geometriccentrifugal stiffening effect. Two conceptually different finite-elementformulations that lead to exact modeling of the rigid body dynamics will beused. The first one is the absolute nodal coordinateformulation in which beams and plates can be treated as isoparametricelements. This formulation leads to a constant and symmetric mass matrix andhighly nonlinear elastic forces. In this study, it is demonstrated thatdifferent element coordinate systems which are used for the convenience ofdescribing the element deformations lead to similar results as the elementsize is reduced. In particular, two element frames are used;the pinned and the tangent frames. The pinned frame has one ofits axes passing through two nodes of the element, while the tangent frame isrigidly attached to one of the ends of the element. Numerical resultsobtained using these two different frames are found tobe in good agreement as the element size decreases. The relationshipbetween the coordinates used in the absolute nodal coordinate formulationand the floating frame of reference formulation is presented. Thisrelationship can be used to obtain the highly nonlinear expression of thestrain energy used in the absolute nodal coordinate formulation from thesimple energy expression used in the floating frame of referenceformulation. It is also shown that the source of the nonlinearityis due to the finite rotation of the element. The result of the analysispresented clearly demonstrates that the instability observedin high-speed rotor analytical models due to the neglect of the geometriccentrifugal stiffening is not a problem inherent to a particular finite-element formulation. Such a problem can only be avoided by considering the known linear effect of the geometric centrifugal stiffening or by using a nonlinear elastic model as recently demonstrated. Fourier analysis of the solutions obtained in this investigation also sheds new light on the fundamental problem of the choice of the deformable body coordinate system in the floating frame of reference formulation. Another method forformulating the elastic forces in the absolute nodal coordinate formulationbased on a continuum mechanics approach is also presented.
Keywords:absolute nodal coordinate formulation  floating frame of reference formulation  centrifugal stiffening  flexible multibody dynamics  large rotations  large deformations
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号