首页 | 本学科首页   官方微博 | 高级检索  
     


Finite prism method based topology optimization of beam cross section for buckling load maximization
Authors:Huu-Dat Nguyen  Gang-Won Jang  Do-Min Kim  Yoon Young Kim
Affiliation:1.Department of Mechanical Engineering,Sejong University,Seoul,South Korea;2.School of Mechanical and Aerospace Engineering,Seoul National University,Seoul,South Korea
Abstract:The use of the finite element method (FEM) for buckling topology optimization of a beam cross section requires large numerical cost due to the discretization in the length direction of the beam. This investigation employs the finite prism method (FPM) as a tool for linear buckling analysis, reducing degrees of freedom of three-dimensional nodes of FEM to those of two-dimensional nodes with the help of harmonic basis functions in the length direction. The optimization problem is defined as the maximization problem of the lowest eigenvalue, for which a bound variable is introduced and set as the design objective to treat mode switching phenomena of multiple eigenvalues. The use of the bound formulation also helps the proposed optimization to treat beams having local plate buckling modes as the fundamental modes as well as beams having global buckling modes. The axial stress is calculated according to the distribution of material modulus which is interpolated using the SIMP approach. Optimization problems finding cross-section layouts from rectangular, L-shaped and generally-shaped design domains are solved for various beam lengths to ascertain the effectiveness of the proposed method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号