首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of chronic run training on Na+-dependent Ca2+ efflux from rat left ventricular myocytes
Authors:BM Palmer  JM Lynch  SM Snyder  RL Moore
Affiliation:Department of Kinesiology and Applied Physiology and The University of Colorado Cardiovascular Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA. palmerbm@spot.colorado.edu
Abstract:The effects of endurance run training on Na+-dependent Ca2+ regulation in rat left ventricular myocytes were examined. Myocytes were isolated from sedentary and trained rats and loaded with fura 2. Contractile dynamics and fluorescence ratio transients were recorded during electrical pacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29 degreesC. Resting and peak cytosolic Ca2+ concentration ([Ca2+]c) did not change with exercise training. However, resting and peak [Ca2+]c increased significantly in both groups during 5 min of continuous pacing, although diastolic [Ca2+]c in the trained group was less susceptible to this elevation of intracellular Ca2+. Run training also significantly reduced the rate of [Ca2+]c decay during relaxation. Myocytes were then exposed to 10 mM caffeine in the absence of external Na+ or Ca2+ to trigger sarcoplasmic reticular Ca2+ release and to suppress cellular Ca2+ efflux. This maneuver elicited an elevated steady-state [Ca2+]c. External Na+ was then added, and the rate of [Ca2+]c clearance was determined. Run training significantly reduced the rate of Na+-dependent clearance of [Ca2+]c during the caffeine-induced contractures. These data demonstrate that the removal of cytosolic Ca2+ was depressed with exercise training under these experimental conditions and may be specifically reflective of a training-induced decrease in the rate of cytosolic Ca2+ removal via Na+/Ca2+ exchange and/or in the amount of Ca2+ moved across the sarcolemma during a contraction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号