首页 | 本学科首页   官方微博 | 高级检索  
     


Portland cement clinker, granulated slag and by-pass cement dust composites
Authors:M Heikal  I AiadI.M Helmy
Affiliation:a Institute of Efficient Productivity, Zagazig University, Zagazig, Egypt
b Egyptian Petroleum Research Institute, Cairo, Egypt
c Faculty of Science, Zagazig University, Zagazig, Egypt
Abstract:
Three blends of slag cement were prepared, namely 70/30, 50/50 and 30/70 mass% of Portland cement clinker and granulated slag, respectively. Each blend was mixed with 2.5, 5.0, 7.5 and 10.0 mass% by-pass cement dust. The physical properties of cement pastes were studied, including setting times, electrical conductivity and fluidity. The results indicated that the rheological properties of Portland cement clinker were enhanced by partial replacement by granulated slag. By-pass cement dust affects the rheological properties of Portland cement clinker/granulated slag composites and depends on its amount as well as mix composition. The increase in the amount of by-pass cement dust increases the required water of normal consistency. The setting time of Portland slag cement paste was extended with the increase in slag content. The addition of 2.5 mass% by-pass cement dust to M.1 (70 mass% Portland cement clinker/30 mass% granulated slag) and M.2 (50 mass% Portland cement clinker/50 mass% granulated slag) retards the initial and final setting time, whereas it accelerates the final setting time of M.3 (30 mass% Portland cement clinker/70 mass% granulated slag). The presence of by-pass cement dust affects the location and height of the conductivity peaks. By increasing the by-pass cement dust from 2.5 to 7.5 mass%, the conductivity maximum increases. With further addition (10.0 mass%), the height of the conductivity maximum decreases.
Keywords:Fluidity   Setting time   Electrical conductivity   By-pass cement dust   Slag
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号