首页 | 本学科首页   官方微博 | 高级检索  
     


Acoustic Emission Analysis of Damage during Compressive Deformation of Amorphous Zr-Based Foams with Aligned, Elongated Pores
Authors:Marie E Cox  David C Dunand
Affiliation:1. Naval Research Laboratory, Washington, DC, 20001, USA
2. Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
Abstract:Acoustic emission methods are used to investigate the evolution of internal microfractural damage during uniaxial compression of amorphous Zr-based foams with aligned, elongated pores. The foams are fabricated by means of densifying a blend of crystalline W powders and amorphous Zr-based powders with two oxygen contents (0.078 and 0.144 wt pct) by warm equal channel angular extrusion, followed by dissolution of the elongated W phase from the fully densified amorphous matrix. For the high-oxygen foams, prior powder boundaries in the amorphous struts promote damage that accumulates during compression, resulting in energy-absorbing properties comparable with the low-oxygen foams without stress-concentrating powder boundaries. The influence of pore orientation on the evolution of microfracture damage and the ability of the foams to accumulate damage without catastrophic failure is also investigated: pores oriented from 24 to 68 deg to the loading direction promote wall bending, resulting in foams with more diffuse damage and better energy-absorbing properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号