首页 | 本学科首页   官方微博 | 高级检索  
     


Accurate object recognition in the underwater images using learning algorithms and texture features
Authors:K. Srividhya  M. M. Ramya
Affiliation:1.Hindustan Institute of Technology and Science,Centre for Automation and Robotics,Chennai,India
Abstract:Underwater image processing is very challenging due to its environmental conditions and poor sunlight. Images captured from the ocean using autonomous vehicles are often non-uniformly illuminated and contain noise due to the underlying environment. Object recognition is a challenging task under water due to the variation in the environment, target shape and orientation. Traditional algorithms based on spatial information may not lead to accurate segmentation as the intensity variation is often less in underwater images. Texture information representing the characteristics of the object is needed. Statistical features like autocorrelation, sum average, sum variance and sum entropy were extracted. These were fed as input to learning algorithms and training was done to effectively classify the object of interest and background. Chain coding was further applied for object recognition. The proposed methodology achieved a maximum classification accuracy of 96%.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号