Characteristics of In/sub x/Al/sub 1-x/N-GaN high-electron mobility field-effect transistor |
| |
Authors: | Katz O. Mistele D. Meyler B. Bahir G. Salzman J. |
| |
Affiliation: | Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel; |
| |
Abstract: | GaN-based field effect transistors commonly include an Al/sub x/Ga/sub 1-x/N barrier layer for confinement of a two-dimensional electron gas (2DEG) in the barrier/GaN interface. Some of the limitations of the Al/sub x/Ga/sub 1-x/N-GaN heterostructure can be, in principle, avoided by the use of In/sub x/Al/sub 1-x/N as an alternative barrier, which adds flexibility to the engineering of the polarization-induced charges by using tensile or compressive strain through varying the value of x. Here, the implementation and electrical characterization of an In/sub x/Al/sub 1-x/-GaN high electron mobility transistor with Indium content ranging from x=0.04 to x=0.15 is described. The measured 2DEG carrier concentration in the In/sub 0.04/Al/sub 0.96/N-GaN heterostructure reach 4/spl times/10/sup 13/ cm/sup -2/ at room temperature, and Hall mobility is 480 and 750 cm/sup 2//V /spl middot/ s at 300 and 10 K, respectively. The increase of Indium content in the barrier results in a shift of the transistor threshold voltage and of the peak transconductance toward positive gate values, as well as a decrease in the drain current. This is consistent with the reduction in polarization difference between GaN and In/sub x/Al/sub 1-x/N. Devices with a gate length of 0.7 /spl mu/m exhibit f/sub t/ and f/sub max/ values of 13 and 11 GHz, respectively. |
| |
Keywords: | |
|
|