摘 要: | 目的 揭示微观组织结构对镍基825合金硫化物应力腐蚀开裂的影响规律及机理。方法 利用金相显微镜(OM)、扫描电子显微镜(SEM)和背散射电子衍射(EBSD)分析了2种镍基825合金的金相组织、夹杂物种类及等级、晶界类型以及残余应变和晶粒尺寸分布。通过显微维氏硬度计评价了合金的力学性能,同时采用氢微印、动态充氢慢应变速率拉伸试验和三点弯曲试验,评估了合金的氢脆倾向和硫化物应力腐蚀开裂敏感性。结果 2种镍基825合金的夹杂物均以B类和D类TiN为主。2种合金中B类夹杂物均以晶界分布为主,D类夹杂物在合金1#中集中分布,在合金2#中随机分布。合金1#中B类夹杂物等级为0.91,D类夹杂物等级为1.4,合金2#中2种夹杂物等级分别为0.54和1.33。氢微印试验发现氢在合金1#的晶内、晶界处均大面积存在,而在合金2#中则分布稀疏。EBSD发现2种合金均为等轴奥氏体,合金1#晶粒尺寸稍大,晶界以随机大角度晶界为主且存在较高的残余应变集中,而合金2#晶粒细小且尺寸分布更均匀,随机大角度晶界和低Σ界面为其主要晶界类型,残余应变分布均匀。合金1#的硬度为184.67HV,屈服强度为285.30 MPa,而合金2#的硬度和屈服强度分别为207.75HV和300.03 MPa。在动态充氢慢应变速率拉伸试验中,2种合金均出现了氢脆倾向,合金1#的断裂延伸率降低了2.6%,而合金2#只降低了1.6%。三点弯曲试验中合金1#表面发生严重均匀腐蚀,出现了以穿晶为主的宏观裂纹,裂纹萌生部位的基体元素显著降低,在其周围还发现了夹杂物及其脱落留下的微孔,而合金2#表面仍有金属光泽,只有微米级的裂纹萌生于应力集中处。结论 大量夹杂物的存在降低了合金1#的屈服强度并导致晶界残余应变集中,同时作为有效氢陷阱增加了镍基825合金硫化物应力腐蚀开裂的敏感性。此外,夹杂物与金属基体之间形成微电偶,促进周围金属阳极溶解,进一步增加了合金的开裂敏感性。
|